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Financial literature and financial industry use often zero coupon yield curves as input 
for testing hypotheses, pricing assets or managing risk. They assume this provided data 
as accurate. We analyse implications of the methodology and of the sample selection 
criteria used to estimate the zero coupon bond yield term structure on several financial 
purposes. As input we consider our own spot rates estimation from GovPX bond data 
and three popular interest rates data sets: from the Federal Reserve Board, from the US 
Department of the Treasury (H15), and from Bloomberg. First, we obtain the volatility 
term structure using historical volatilities and Egarch volatilities. Second, we estimate 
correlation coefficients among forward rates. Third, we price a set of simple interest rate 
derivatives. We find strong evidence that the resulting zero coupon bond yield volatility 
estimates as well as the correlation coefficients among spot and forward rates depend 
significantly on the data set. We observe relevant differences in economic terms when 
volatilities are used to price derivatives. We also show the impacts of the yield curve 
choice for the results of classic term structure hypothesis tests. 
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1.- Introduction 
 
Most practitioners and researchers use data sets of estimated zero-coupon yield curves 
for computing the term structure of interest rates volatility. This relationship between 
zero coupon bond yield volatilities and their term to maturity is a key input of a number 
of financial purposes, such as calibrations of fixed income valuation models, valuations, 
Greek calculations, risk measurement, or design of hedging strategies.  
 
Díaz et al. (2011) emphasize the significant impact of the chosen model for fitting the 
zero coupon yield curve on the volatility estimates. They estimate the yield curves using 
two alternative methods, the proposed by Nelson and Siegel (1987) and by Vasicek and 
Fong (1982), from the Spanish Treasury debt market. However, practitioners and 
researchers usually download the zero coupon yield curves from a database provider 
instead of proceeding to estimate them directly from market data. A few yield curve 
data sets have become popular. Some of them because they are publically available and 
without charge, other ones because are offered by the main financial data providers.   
These popular yield curve data sets consider market prices or market yields to maturity 
of different sets of Treasury securities and use different estimation methods. Spot rates 
are estimated approximating a particular functional form to a theoretical discount 
function that values as accurately as possible bond prices. Most papers in the literature 
and most practitioners seem not to be concern about these divergences between the raw 
material and the way the yield curves are obtained. They assume as certain and perfectly 
accurate one of these alternative yield curve data set without further ado.  
 
This study investigates the effects of using alternative commonly accepted yield curve 
data sets on the resulting volatility of the estimated zero coupon bond yields. We also 
examine the statistical and economical implications on the forward rate correlations and 
on the pricing of simple fixed income derivatives. We examine daily data from January 
1994 to December 2006 obtained from the Treasury YC estimates of the Federal 
Reserve Board (FRB)1 posted on its website and commented by Gürkaynak et al. 
(2006),2 from the YC reported by the U.S Department of the Treasury (DoT),3 from the 
Bloomberg (F082) zero coupon yield curve, and from our own estimations using the 
Svensson method from prices reported by GovPX. These four different data sets use 
different estimation methods: a weighted Svensson (1994) model (FRB), a quasi-cubic 
hermite spline function (DoT), a piecewise linear function (F082), and a weighted and 
an unweighted Svensson model (our estimates). They analyze different security sets: 
off-the-run bonds (FRB), on-the-run bills and bonds (DoT), all the outstanding (even 
callable) bonds (F082), and all the traded bills and bonds (our estimates). Finally they 
consider different market data as input: market prices (FRB and our estimates), market 
yields (DoT), and generic prices (F082).  
 
This analysis is focused on the current volatility instead of the implicit volatility. 
Although some interest rate volatilities can be considered as an observable variable, for 

                                                 
1 This data set is called “the FRB data set” in this paper for convenience. However, the spreadsheet that 
can be downloaded from the FRB website contains this sentence: “Note: This is not an official Federal 
Reserve statistical release.” 
2 It is usually cited in the literature as Federal Reserve H15 series. 
http://www.federalreserve.gov/econresdata/researchdata.htm 
3 http://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=yield 
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instance, through the quotations of contracts such as caps, caplets, floors, these 
volatilities are not the variable we are interested on. They are implicit volatilities, i.e. 
volatilities of forward interest rates instead of zero coupon bond yields.  
 
The term structure of volatilities is a necessary input for calibrating many interest rate 
models and particularly the so called “volatility consistent models”. Within this 
category we can find models such as Black, Derman and Toy model, one of the most 
popular tools among practitioners, or some extended versions of Hull and White model. 
Many financial problems, such as product valuations, risk measurements, hedging 
strategies, depend on spot interest rate volatilities and correlations. For instance, Value 
at Risk depends, above all, on the volatility of spot interest rates and their correlations. 
 
In many topics of Macrofinance or Monetary Policy the term structure of interest rate 
plays a decisive role. Examples of this can be the problem of testing expectations 
hypothesis, the estimation of risk premium in bond markets, the ability of volatility to 
capture the economic uncertainty and its forecasting power with respect to the business 
cycle, the problem of the volatility transmission along the yield curve. 
 
But we must be aware of the fact that when proceeding in this way we are estimating 
the volatility of the sum of two elements: the zero coupon bond yield itself and a 
“small” error term. So, the question we would like to answer is to what extent the 
valuations, risk measurements, hedging strategies, etc. that depends so crucially on 
interest rate volatilities are “contaminated” by the particular set of estimated spot rate 
data employed. Does it matter the method or the bond sample we (or someone else) 
have used to estimate the term structure of interest rates for the resulting estimates of 
the volatility term structure?  
 
As far as forward rates depend of pairs of spot rates, the results of most of the test of 
this hypothesis will depend, in the end, on the variances and covariances among sets of 
spot rates with different maturities. Then, do the outcomes of these experiments depend 
on the actual set of spot rates eventually chosen for testing this hypothesis? Moreover, 
do the correlations among forward rates depend on the method used to estimate spot 
rates? 
 
In this paper, we analyse to what extend the zero coupon yield curve (YC) data set 
affect on the resulting volatility term structure (VTS). We check whether these data sets 
determine the VTS even more than the own method used for fitting the VTS. We 
analyze statistic and economic implications of considering one among several popular 
YC data sets. A previous paper of Díaz et al. (2011) observes statistically significant 
differences in the resulting volatility term structure when alternative fitting methods and 
error structure assumptions are used to estimate the Spanish term structure of interest 
rates.4  
 
We consider the aforementioned three YC data sets, FRB, DoT and F082, and our own 
estimations using both the unweighted and weighted versions of the Svensson method 

                                                 
4 The Spanish Treasury bond market is not comparable to the US Treasury bond market in terms of size, 
maturity structure, number of outstanding bonds, depth, liquidity, issuance policy, on-the-run process, etc. 
Fitting methods that provide a good fitting in a market where on average 22 different issues are daily 
traded and the longest bond maturity is 15-year, give disappointing results in a market where on average 
132 different issues are daily traded and new 30-year bonds are quarterly issued. 
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from prices of all the traded bills, bonds, and notes reported by GovPX. From these 
estimates of the YC, we proceed to estimate interest rate volatilities. We consider both 
model-free volatilities computed using a 30-day rolling window estimator and model-
implied volatilities from conditional volatility models (GARCH models). A standard 
EGARCH(1,1) model is traditionally assumed to estimate volatility of daily interest 
rates (see, e.g., Longstaff and Schwartz, 1992). However, since Hamilton (1996), the 
EGARCH model has been widely used for analyzing the volatility of daily short term 
and very short term interest rates. Andersen and Benzoni (2007) have documented that 
an EGARCH representation for the conditional yield volatility provides a convenient 
and successful parsimonious model for the conditional heteroskedasticity in these series. 
According to the Schwarz and Akaike Information Criterion (SIC and AIC 
respectively), we choose the EGARCH (1, 1) model to estimate interest rate volatility. 
 
We show statistically and economically significant differences between estimates of the 
term structure of interest rate volatilities depending on the YC data set and even in the 
structure of errors used in our own YC estimates. These differences are observed mainly 
in the short-term, but also in the long-term volatility. This inspection could have 
significant consequences for a lot of issues related to risk management in fixed income 
markets.  
 
The expectations hypothesis has received a great deal of attention in the empirical 
literature. Although empirical researchers have frequently rejected the expectations, the 
empirical evidence varies from one study to the next depending on the precise 
implication tested, the segment of the yield curve examined or the period under study. 
We replicate the classical Campbell (1995) test using our different data sets. In this 
sense, we are exploring the expectations hypothesis by using the same model to test, the 
same interest rate maturities, and the same period. We obtain different results depending 
on the yield curve data set. 
 
The rest of this paper is organized as follows. Section 2 describes the alternative yield 
curve data sets we examine. First part of the section analyses the fitting process of our 
own estimates using Svensson method. We describe the original data set we use, the 
model and the assumption about the error term variance. Second part of the section 
analyses the main characteristics of the external yield curve data we examine. Section 3 
describes the empirical analysis that consists on the study of the impact of the 
methodology for estimating spot rates on the yield curve, the impact on the term 
structure of volatilities, the impact on the correlation of forward rates, the impact on the 
pricing of fixed income derivatives, and the impact on the expectations hypothesis tests. 
The last section includes our summary and conclusions. 
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2.- The alternative yield curve data sets 
 
2.1. Our zero yield curve estimates 
 
2.1.1. Our original data set 
 
We obtain intraday U.S. Treasury security quotes and trades for all issues between 
January 1994 and December 2006 (2,864 trading days) from the GovPX database.5 
GovPX consolidates and posts real-time quotes and trades data from six of the seven 
major interdealer brokers (with the notable exception of Cantor Fitzgerald). Taken 
together, these brokers account for about two-thirds of the voice interdealer broker 
market. In turn, the interdealer market is approximately one half of the total market (see 
Fleming, 2003). Hence, while the estimated bills coverage exceeds 90% in every year of 
the Fleming’s GovPX sample (Jan 97 – Mar 00), the availability of thirty-year bond 
data is limited because of the prominence of Cantor Fitzgerald at the long-maturity 
segment of the market. According to Mizrach and Neely (2006), voice-brokered trading 
volume began to decline after 1999 as electronic trading platforms (e.g., eSpeed, 
BrokerTec) became available. In fact, GovPX does not provide aggregate volume and 
transaction information from May 2001.6 Therefore, we assume an imperceptible impact 
of the decline in GovPX market coverage on our estimates since we consider the 
midpoint prices and yields between bid and ask at 5 pm. 

 
The GovPX data set contains snapshots of the market situation at 1 pm, 2 pm, 3 pm, 4 
pm, and 5 pm. Each snapshot includes detailed individual security information such as 
CUSIP, coupon, maturity date, and product type (indicator of whether the security is 
trading when issued, on the run, or active off the run). The transaction data include the 
last trade time, size, and side (buy or sell), price (or yield in the case of bills), and 
aggregate volume (volume in millions traded from 6 pm previous day to 5 pm). The 
quote data include best bid and ask prices (or discount rate Actual/360 in the case of 
bills), and the mid price and mid yield (Actual/365). 

 
Our initial sample relies on the information at 5 pm, i.e. last transaction taking place 
during “regular trading hours” (from 7:30 am to 5:00 pm Eastern Time, ET) if available, 
or quote data otherwise. We complement the GovPX data with official data on the dates 
of the last issue and of the first coupon payment, and the coupon rate of each Treasury 
security.7 This information is publicly available on the U.S. Treasury Website. 

 
To obtain a good adjustment in the short end of the yield curve, we consider all the 
Treasury bills. In this term to maturity segment, bills are very much more actively 
traded than old off-the-run notes and bonds.8 Thus, we include only the Treasury notes 
and bonds that have at least one year of life remaining. Since the number of outstanding 
bills with terms to maturity between 6-month and 1-year declines considerably during 

                                                 
5 GovPX Inc. was set up under the guidance of the Public Securities Association as a joint venture among 
voice brokers in 1991 to increase public access to U.S. Treasury security prices. 
6 After ICAP’s purchase of GovPX in January 2005, ICAP PLC was the only broker reporting through 
GovPX. 
7 “Standard interest payment” field gives indirectly information to identify callable bonds and TIPS 
(Treasury Inflation-Protected Securities).  
8 Also, Fleming (2003) emphasizes that GovPX bill coverage is larger than bond and note coverage. 
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year 2000 and the 1-year Treasury bill is no longer auctioned beginning March 2001, 
we also consider Treasury notes and bonds with remaining maturities between 6- and 
12-month from 2001. 

 
We also apply other data filters designed to enhance data quality. First, we do not 
include transactions associated with “when-issued” and cash management, or trades and 
quotes related to callable bonds and TIPS (Treasury Inflation-Protected Securities). 
Second, when two or more different securities have the same maturity, we only consider 
trades and quotes of the youngest one, i.e. the security with the last auction date. 
Finally, we exclude yields that differ greatly from yields at nearby maturities.9 In certain 
dates, we apply an ad hoc filter. We observe occasionally that deleting a single data 
point in the set of prices used to fit the yield curve can produce a notable shift in 
parameters and also in fitted yields improving notably the fitting. This phenomenon is 
also commented by Anderson and Sleath (1999). 

 
Controlling for market conventions, we recalculate the price of each security in a 
homogeneous fashion to avoid effects of different market conventions depending on 
maturities and assets. Every price is valued at the trading date in an actual/actual day-
count basis. In the case of Treasury bills, firstly we obtain the price at the settlement 
date from the last trade price if available or from the mid price between bid-ask 
otherwise.10 In both cases, the GovPX reported price is a discount rate using the 
actual/360 basis. Secondly, we compute the yield-to-maturity as a compound interest 
rate using the actual/actual. Thirdly, we calculate “our” price at the trading date using 
the yield-to-maturity obtained in the previous step.11 In the case of Treasury notes and 
bonds, the price is directly reported in the data as the last trade price or the mid price. 
From this price we apply the mentioned second and third steps to obtain “our” 
homogeneous price.12  

 
2.1.2. Our term structure specification 
 
The estimation of the spot rates consist of finding a functional form that approximates 
the theoretical discount function, D(t), and to replicate at a given instant as accurately as 
possible a set of bond prices: 
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where Pk is the price of bond k, CT

k are the cash flows (coupon and principal payments) 

generated by bond k, D(T,b ) the discount function that we want to approximate and that 

depends on a vector of parameters b and εk is an error term. 
 
Among practitioners it is usual to estimate the yield curve from successive swap rates 
combined with money market data and/or coupon bond market data. The quoted swap 
rates can be considered as par yields for bonds. They use the simple non-parametric 

                                                 
9 These cases include interdealer brokers’ posting errors like those mentioned by Fleming (2003). 
10 We do not consider the reported mid yield. This is a simple interest with actual/365 basis, except for 
more than 6-month remaining maturity bills which are valued using the bond equivalent yield. 
11 Note that the settlement date is in most cases a working day after the trading date. 
12 We control for the special amount of the first interest payment in just-issued securities. 
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bootstrapping technique to obtain spot rate estimates for certain fix maturities. Other 
maturities are obtained from more or less sophisticated interpolation methods. The 
resulting implied forward curve can be irregular e.g. curve with “sawtooth”, inconsistent 
and sensitive to bond price variations/errors. 
 
The term structure can be approximated using mainly two sets parametric models 
depending on the functional form. Models based on the discount function or spline-
based approaches, such as McCulloch (1971) or Vasicek and Fong (1982), and models 
based on the forward curve, such as Nelson and Siegel (1987) or Svensson (1994). 

 
These models can have different degrees of flexibility to describe the term structure of 
interest rates. For instance some models may have a greater ability to describe the hump 
so often observed in the yield curve or the behaviour of long term interest rates 
meanwhile others can be more rigid in the adjustment of the actual yield curve; in this 
case, some models may produce more or less volatile interest rate estimates in some 
tranches of the yield curve. If a model is too rigid to adapt to the actual shape of the 
yield curve it may produce in some regions of the yield curve estimates of the spot rates 
that fluctuate less than real spot rates do. However, a more flexible model may capture 
more adequately the real behaviour of interest rates. 
 
According to the Bank of International Settlements (BIS, 2005), nine out of thirteen 
central banks currently use either the Nelson and Siegel (1987) or the extended version 
suggested by Svensson (1994) for estimating the term structure of interest rates.13 One 
of the exceptions is the United States which applies a “smoothing splines” method.  
 
Díaz et al. (2011) obtain good fitting results when they apply Nelson and Siegel (1985) 
and Vasicek and Fong (1982) (just one knot) in their Spanish Treasury debt sample. We 
initially try to use same methods from our GovPX’s US Treasury debt sample. 
Unfortunately we discard these methods since several deficiencies are observed in most 
dates. It can be observed weakness in the fitting for maturities longest than fifteen years.  
In addition they are not able to replicate the short-term hump that is observed in most 
dates. These methods consider only one hump.  
 
We apply the Svensson (1994)’s “two-hump” model which provides us more reliable 
fit.14 The Svensson (1994) model can be considered as an extension of Nelson and 
Siegel (1985) model. Both methods are simple parametric models of the term structure 
of interest rates. These parsimonious approaches impose a functional form for the 
instantaneous forward rates. In the case of the Svensson model, the forward rates are 
governed by six parameters: 

                                                 
13 Svensson extension allows to capture a second hump and s-shapes, but these shapes hardly ever appear 
in term structures shorter than 20-years. This is the case of our sample. Also Bolder and Stréliski (1999) 
comparison among NS, Svensson and Super-Bell models is not conclusive. For several goodness-of-fit 
measures, they observe that “The Nelson-Siegel model appears to perform better than the Svensson model 
for the flat and inverted term structures and worse for an upward-sloping yield curve. In aggregate, they 
even out and show little difference.” In this sense, Diebold and Li (2006) enumerate a number of authors 
that have proposed extensions to NS to enhance flexibility (including Svensson); however, they conclude 
that from the perspective of interest rate forecasting accuracy, the desirability of these generalizations is 
not obvious. 
14 We do not analyze results for the estimated US zero coupon yield curve using unweighted and 
weighted versions of Vasicek and Fong (1982) and Nelson and Siegel (1987) models. We do not consider 
these results in the interest of brevity. These results are available upon request from the authors. 
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where T is the term to maturity and (β0 , β1 , β2 , τ1 , β3 , τ2) the set of parameters to be 
estimated. 
  
The two last parameters make different NS and Svensson. The latter is a more flexible 
approach that allows a second “hump” in the forward rate curve and also provides a 
better fitting of the convex shape of the yield curve in the long end. 
 
A number of authors have interpreted the first three parameters in the NS model, β0, β1 
and β2, as the specific factors that drive the yield curve: level, slope, and curvature. In 
concrete, β0 is related to the long-run level of interest rates and β1 is regarded as the 
long-to-short-term spread. Literature pays less attention to the parameter 1. It is usually 
fixed at a prespecified value. Diebold and Li (2006) justify this simplification in terms 
of simplicity, convenience and “numerical trustworthiness by enabling us to replace 
hundreds of potentially challenging numerical optimizations with trivial least-squares 
regressions”. Anyway, we estimate the six parameters as in the original proposal of 
Svensson. Our experience shows that the value of both parameter τ1 and τ2 are much 
more volatile than the values of the other four parameters, but they play a relevant role. 
These parameters determine inflection points and decide the position of the possible two 
humps in the yield curve. 
 
NS and Svensson methods have a number of advantages over the spline methods. They 
are simple, they result in more stable yield curves, they require fewer data points, and 
they do not require finding an appropriate location of knot points which joint up a series 
of splines. However, spline methods allow for a much higher degree of flexibility than 
parametric models. Specifically, the individual curve segments can move almost 
independently of each other (subject to the continuity and differentiability constraints), 
so that separated regions of the curve are less affected by movements in nearby areas. 
Therefore spline approaches incorporate a wider variety of yield curve shapes than 
Svensson method.  

 
2.1.3. The assumption about the error term variance 
 
The second element in the process of estimation of zero coupon yields that can impact 
on the resulting volatility of interest rates is the structure of the variance of the error 
term εk of model [1]. 
 
The first estimates of the term structure of interest rates usually assumed 
homoskedasticity and so the model could be estimated using ordinary least-squares 
(OLS). 
 
    [3]  
 
But this is not a neutral assumption. In fact a small error in a short term bond price 
produces an important error in its yield to maturity. On the contrary, a big error on the 
price of a long term bond affects very slightly its yield to maturity. We should not forget 
that in this model the dependent variable is bond prices. And so, if we assume 

22 ][ kVAR
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homoskedasticity we give the same importance to errors in the price of all bonds and 
that means that we are penalizing very heavily errors in the yields of long term bonds. 
So, to assume homoskedasticity implies forcing the adjustment in the long end of the 
yield curve but at the cost of relaxing the adjustment the curve for short maturities.  
 
To correct this problems some authors suggested to penalize the valuation errors of the 
short term bonds and particularly it is usually suggested to correct the variance of the 
error term making it proportional to the bond duration that is: 
 
    [4] 
 
where Dk is the k-bond duration, yk its yield to maturity and Pk its price. Then the model 
is adjusted using generalized least-squares (GLS). 
 
In this way we force the adjustment of the short term interest rates. But this is not free: 
it implies relaxing the adjustment of long term interest rates. 
 
What we claim is that this correction of the variance of the error term affects not only to 
the accuracy of the estimates but also to the volatility of these estimates. Moreover, it 
may cause an important impact on the relative fluctuation of the estimated long and 
short term spot rates and so it may affect significantly the shape of the volatility term 
structure. 
 
Figure 1 depicts the term structure estimations for the 18th of January 1996. The solid 
line represents the SV model estimate using the heteroskedatic structure. We can see 
that the curve describes quite well the data for short maturities. On the contrary, the 
dotted line represents the SV model estimate of the term structure applying the 
unweighted or homoskedatic scheme for the variance of the error terms. We can see that 
the adjustment is pretty bad for short maturities because when making this assumption 
the model does not care the adjustment in this side of the yield curve. It only pays 
attention to what happen in the other side. So we wonder if the assumption about the 
structure of the variance of the error term affects not only the quality of the adjustment 
but also the volatility of the estimated interest rates when we proceed to estimate the 
yield curve day after day.  
 

[INSERT FIGURE 1] 
 
The results have been summarised in Table 1 and Figure 2. Panel A shows the sum of 
squared residuals using the two methods and Panel B reports statistics of the estimated 
parameters. As expected, the homoskedatic estimates produce lower squared residual 
than the corresponding heteroskedastic estimates. In Figure 2 we picture the estimated 
term structures of interest rates corresponding to the first working day of June during 
the eleven years of our sample. These estimates were obtained using the Svensson 
model and assuming heteroskedasticity.  
 

[INSERT TABLE 1 AND FIGURE 2] 
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2.2- The external zero yield curve data sets 
 
We compile zero coupon yield curves from three external data sets. They use different 
estimation methods, security sets, and bond prices. First, we examine the Treasury YC 
estimates of the Federal Reserve Board (FRB) posted on its website and commented by 
Gürkaynak et al. (2006). They use a weighted version of the Svensson (1994) method 
from prices of all the outstanding off-the-run bonds. Among other securities, they 
exclude in their estimation all Treasury bills, and the on-the-run and the “first-off-the-
run” issues of bond and notes.  
 
Second, we analyze the yield curve reported by the U.S Department of the Treasury 
(DoT). Treasury does not publish historical data of these rates but they can be 
downloaded as H.15 in the Federal Reserve Statistical Release. They use a quasi-cubic 
hermite spline function that passes exactly through the yields on the chosen securities as 
YC method.15 Thus DoT does not estimate a zero-coupon term structure since they just 
obtain a yield curve (a relation between yields to maturity and terms to maturity). They 
consider it as a “par curve” since the on-the-run securities typically trade close to par. 
No details about the concrete used functions are reported by DoT. As inputs they use 
the yields for the on-the-run securities. They include four maturities of most recently 
auctioned bills (4-, 13-, 26-, and 52-week), six maturities of just-issued bonds and notes 
(2-, 3-, 5-, 7-, 10-, and 30-year), plus the composite rate in the 20-year maturity range.  
 
Third, we consider the Bloomberg (F082) zero coupon yield curve. They use a 
piecewise linear function from Bloomberg generic prices of all the outstanding Treasury 
bonds. No details about the concrete used functions are reported by Bloomberg. They 
estimate the zero coupon yield curve which they use to generate “Bloomberg fair value” 
curves for pricing most bonds that are traded over-the-counter or are illiquid bonds.16  
 

3. Empirical analysis 
 
3.1. The impact of the methodology for estimating spot rates on the yield 
curve 
 
3.1.1. The flexibility of the model 
 
We compare our Svensson’s estimates with the reported by three popular data sets: the 
US Department of Treasury (DoT), the Federal Reserve Board (FRB), and Bloomberg 
(F082). Each one uses a different fitting technique and a different bond set.  
 
Figure 3 depicts the original yields to maturity of the traded bonds, notes, and bills in 
the US Treasury market on July 5th 2006. Also the different term structures of interest 
rates are represented. The vertical axis represents interest rates and the horizontal axis 
the term to maturity of the securities traded in that market. The dots correspond to the 
yields to maturity of these securities. The lines represent estimations of the term 

                                                 
15 http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/yieldmethod.aspx 
16 Bloomberg explains that a piecewise model contains more points than parameterized smooth curve. 
Thus they improve the fit of the yield curve. However, they recognize that this function could result in 
unstrippable zero curves and negative forward rates as well. See M. Lee, International Bond Market 
Conference 2007, Taipei. 
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structure using alternative models. The zero coupon interest rates are fitted using 
unweighted and weighted versions of Svensson from our bond price data set (GovPX) 
and the yield curves reported by the Department of Treasury (DoT), the Federal Reserve 
Board (FRB), and Bloomberg (F082). 
 

[INSERT FIGURE 3] 
 
It is no easy to find a function that can capture the hump that can be observed quite 
often in the US market. For instance, the DoT curve shows clearly mispriced zero-
coupon interest rates for maturities between 2- and 7-year. Even the FRB curve obtained 
using weighted Svensson has not the desired characteristics for several reasons. First, 
the short-end of the curve is not fitted (the curve provides very short-term interest rates 
around 5.47% and the observed ones are around 4.85%). Second, the convexity problem 
appears in the long-end of the term structure. Most flexible methods usually present this 
problem which prevents that these long-term zero coupon interest rates meet the 
requirements to supply credible forward interest rates. The forward rates are very 
sensitive to the shape of the yield curve particularly in the very long end. Zero coupon 
yield curve must be asymptotically flat in order to provide a desirable flat forward rate 
curve. Gürkaynak et al. (2006) emphasize that convexity makes it difficult for fitting the 
entire term structure, especially those securities with maturities of twenty years or 
more.17 They maintain that convexity tends to pull down the yields on longer-term 
securities, giving the yield curve a concave shape at longer maturities. This is the case 
of DoT, FRB and F082 yield curves in this particular date.18 
 
 
3.1.2. The importance of the actual data set 
 
In this section we point out that assets eventually selected in the estimation of the term 
structure of interest rates can have a significant impact on the resulting volatility 
estimates of spot rates. 
 
In the Treasury market are traded securities with important differences, such as 
remaining maturity, different degrees of liquidity, tax premia, or embedded optionality 
and other features.  
 
The BIS (2005) technical report comments the importance of the maturity spectrum. 
Most central banks exclude part of the maturity spectrum for which debt instruments are 
available. For instance, only the interval from one to 10 years is considered by certain 
central banks. In modelling the short-end of the term structure, this decision concerns 
mostly the choice of the types of short-term instruments regarded to be the most suitable 
and the minimum remaining term to maturity allowed in the estimation.  
 
In this sense, the Treasury debt security data sets used in the estimation of the four zero 
coupon yield curve sources analyzed in this paper are quite different. Considering 
securities with remaining maturities shortest than one year, we include only the traded 

                                                 
17 Convexity is understood as that obtained from the second-order approximation of the change in the log 
price of the bond. 
18 It is not possible to replicate the observed 30-year bond price from the spot rates obtained from H15 
and F082 yield curves since the 30-year spot rate in both cases is lower than the yield to maturity of the 
bond. 
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bills reported in the GovPX’s US Treasury debt sample;19 the FRB estimates only 
include the “second-off-the-run” bonds or older, i.e. they exclude bills and the on-the-
run bond and the “first-off-the-run” bond; the DoT uses as input the four most recently 
auctioned bills (4-, 13-, 26-, and 52-week); and Bloomberg considers all the outstanding 
Treasury bonds.  
 
Liquidity may have an important impact on prices. Sarig and Warga (1989) and Warga 
(1992) suggest that younger bonds are usually traded more frequently. Warga (1992) 
uses an auction status dummy variable that indicates whether or not an issue is “on-the-
run” (i.e., the most recently issued security of a particular maturity). Amihud and 
Mendelson (1991) observe that bonds approaching maturity are significantly less liquid 
since they are “locked away” in investors’ portfolios. Goldreich et al. (2005) emphasize 
expected liquidity over the full life of the issue –not just the current level of any 
liquidity measure– as the most relevant theoretical constructs for valuing bond liquidity. 
 
Usually when a bond is just issued it concentrates the most of the trading volume as 
most investors and fund managers are trying to allocate or distribute this new asset in 
their portfolios or within their clients. But as this bond becomes seasoned and above all 
when new references are issued the trading volume decreases dramatically and so does 
its liquidity. And this seems to have an important impact on bond prices. 
 
In our zero-coupon yield curve estimates we include all the traded bills plus the traded 
bonds and notes with at least one year of life remaining reported in the GovPX’s US 
Treasury debt sample. The FRB estimates only include second-off-the-run or older 
bonds with more than three-month to maturity. They exclude quotes of all securities 
with less than three months to maturity, all Treasury bills, all twenty-year bonds since 
1996, the on-the-run and the first-on-the-run bonds and “other issues that we 
judgmentally exclude on an ad hoc basis”. The DoT uses as input bid-side yields from 
the four most recently auctioned bills (4-, 13-, 26-, and 52-week), the six maturities of 
on-the-run bonds and notes (2-, 3-, 5-, 7-, 10-, and 30-year), plus the composite rate in 
the 20-year maturity range. To fit the F082 series, Bloomberg consider all the 
outstanding Treasury bonds, i.e. callable or not callable, and traded or not traded during 
the day. No bills are included.  
 
Some authors use actual transaction prices, some other quoted prices (mid bid-ask, bid 
or the ask prices), and some other yields to maturity. We consider the information at 5 
pm reported by GovPX, i.e. last transaction price taking place during “regular trading 
hours” (from 7:30 am to 5:00 pm Eastern Time, ET) if available, or quote data 
otherwise (mid bid-ask quotes from 2001). The DoT uses as inputs the “close of 
business” bid yields for the on-the-run securities. They use composites of off-the-run 
bonds in the 20-year range reflecting market yields available in that time tranche. 
Gürkaynak et al. (2006) comment that they use end-of-day prices for their FRB 
estimates but they do not specify what kind of prices are. Finally Bloomberg considers 
“Bloomberg generic” (BGN) prices. They are obtained as the simple average price of all 
kinds of prices, including indicative prices and executable prices, quoted by their price 
contributors over a specified time window. 
 

                                                 
19 We also consider Treasury notes and bonds with remaining maturities between 6- and 12-month from 
2001. 
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BIS (2005) emphasizes that premia induced by tax regulations are notoriously difficult 
to deal with. Several postures can be adopted: attempting to remove tax-premia from the 
observed prices before they are used in estimations, excluding instruments with 
distorted prices from the data set, or ignoring this problem altogether. We assume that 
the four data sets we analyze adopt the last option. 
 
During the sample period, a group of old 30-year callable bonds is outstanding. Market 
prices the optionality and these bonds are traded at extremely high yields to maturity.20 
Gürkaynak et al. (2006) explicitly mention that they exclude all securities with option-
like features. We also omit these bonds. They cannot be included in the DoT sample 
since they only consider on-the-run bonds. Thus, only Bloomberg takes into account 
these bonds.  
 
The upper panel of Figure 4 depicts the observed yields to maturity for the traded 
securities on September 9th 1999. It can be seen the gap in terms of yield to maturity 
between the on-the-run bonds and the off-the-run bonds. So when adjusting the yield 
curve we have to decide if we include all the bonds, only the most liquid ones or just the 
opposite. But depending on this decision we are estimating, in fact, different interest 
rates: the spot rates corresponding to average market liquidity level, the spot rates of the 
most liquid references or the spot rates of seasoned bonds. The level of these interest 
rates should be different, but probably the volatility is different too. 
 

[INSERT FIGURE 4] 
 
Lower panel of Figure 4 and also Figure 3 illustrate some of the differences that affect 
both the level and the shape of the term structure. We can outline at least three points. 
First, the differences in level correspond mainly to the estimations of the Department of 
Treasury. Second, we can appreciate important differences in the shapes of the other 
three estimations although they all used Svensson’s model. The Federal Reserve 
produces estimates with a concave shape in the long end of the yield curve: this may 
have a very important impact on the forward rates with longer maturities. Third, the 
unweighted scheme tends to produce a different adjustment in the short end of the yield 
curve. 
 
At first glance these divergences in the estimation method and in the sample 
composition prognosticate relevant differences in the estimated yield curve and hence in 
the estimated volatility term structure. However, most papers in the literature and most 
practitioners seem not to be concern about that. They assume as certain and accurate 
one of these alternative yield curve data set without further ado. We wonder if all these 
elements can have a statistically and economically significant impact on the resulting 
volatility of the estimated zero coupon bond yields and this is what we have tried to 
answer. 
 
 

                                                 
20 In the date shown in Figure 3, 11 callable bond issues with remaining maturities between 10 and 15 
years were traded at yields to maturity between 7.5% and 8.5%. 
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3.2. The impact on the term structure of volatilities 
 
3.2.1. Volatility estimates 
 
From the three external yield curve data sets and our two yield curve data sets 
corresponding to our Svensson estimates, we extract 27 different spot rates with 
maturities ranging from one week up to 30 years. 
 
From these data sets we use two alternative methods to estimate the volatility term 
structure (VTS). First, we calculate simple standard deviation measures using 30-day 
rolling windows from log-difference of the value of the spot rates. We call the resulting 
annualized volatilities as “historical volatilities”. Second, we considered different 
specifications of the well known family of the conditional volatility models. Finally we 
choose the EGARCH(1,1) model proposed by Nelson (1991) which allows for 
asymmetric impacts of the innovations. Table 2 summarizes some statistical results of 
the VTS estimations  
 

[INSERT TABLE 2] 
 
In order to illustrate the results for different assumptions about the variance of the error 
term, Figure 5 depicts the term structure of volatilities obtained from our Svensson spot 
rates using the unweighted version in the panel A (homoskedastic assumption) and the 
weighted version in the panel B (heteroskedastic one) for the first working day of June 
during the sample period. There is a great diversity of shapes that the volatility term 
structure has taken during the sample period. We can see increasing curves, humped 
curves, double humped curves … It is evident that single factor models of the term 
structure can hardly capture this variety of profiles and shapes of the volatility. 
 

[INSERT FIGURE 5] 
 
Although these volatilities term structures have been chosen randomly, we can see that 
the shape of the term structure changes significantly depending of the weighting scheme 
we had chosen to estimate the term structure of interest rates.  
 
We can also observe that humps shifted towards the left and also for very short 
maturities, the weighted scheme produced estimates of spot rates with a higher 
volatility. All this is due to the fact that using the heteroskedastic assumption forces the 
adjustment in the short end of the curve. On the contrary, the volatility estimates of very 
long term rates are higher when the weighted scheme is introduced. 
 
The differences in the VTS obtaining for the alternative data sets are particularly 
relevant in some dates. Figure 6 depicts an example for the July 3rd 2006. We can 
observe differences in shapes and in levels during the entire maturity spectrum but 
especially relevant in the short end of the curves. 
 

[INSERT FIGURE 6] 
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3.2.2. Tests of differences in the volatility estimates 
 
To test if the observed differences in the VTS are significant from a statistical point of 
view we applied a sign test. This test allows checking if two alternative models produce 
significant differences in the resulting spot rate volatilities.  
 
This test assumes as null hypothesis that given two alternative models to estimate zero 
coupon bond yields, the probability that one of them produces a higher volatility 
estimate than the other for a given day is 50 %. Thus the null hypotheses assumes that 
the method used to estimate the spot rates do not produce significant differences in the 
resulting zero coupon bond yield volatilities. 
 
As we used a 30 day window to estimate the volatilities we selected one out of thirty 
estimates from our 2717 daily volatility estimates in order to avoid autocorrelation 
problems.  Eventually, we had 91 independent volatility estimates for each maturity. 
 
Under the null hypothesis the number of times that one method produces a higher 
volatility estimate than the other (x) is distributed according to a binomial random 
variable with parameters N=91 and p=0,5. As N is big enough we eventually assumed 
that X can be approximated by a normal distribution with mean N·p and variance 
N·p·(1-p), that is  X~ N(55,5; 27,75). The results are summarised in Table 3. 
 

[INSERT TABLE 3] 
 
This table shows which method (compared by pairs) produces lower volatility 
estimates. Panel A and panel B indicate these results for both alternative volatility 
specifications: historical volatility and EGARCH model respectively. 

 
Looking at Figure 6 and Table 3 there are various issues that should be highlighted. The 
first one is that alternative models produce a significantly different volatility term 
structure, differences that seem to affect all maturities. Particularly, the most rigid 
model seems to provide the less volatile zero coupon rates above all for the shortest and 
longest maturities. 
 
On the whole, we can state that differences are quite important. The FRB estimates 
produce significantly lower spot rate volatility than other estimates including those of 
the DoT (except for very short maturities). At the same time, the DoT estimates seem to 
produce less volatile spot rates than our estimates although these results are not so clear 
when the GARCH model is used to estimate volatilities.  
 
 
3.3. The impact on the correlation of forward rates 
 
Forward rates play a key role in many financial issues, such as the implementation of 
interest rates models as Heath, Jarrow and Morton, or in many product valuations where 
correlations among forward rates are crucial (for instance in swaptions), or for testing 
the Expectations Hypothesis. 
 
But at the same time forward rates can be very sensitive to the method employed in 
estimating the yield curve and so the correlations among forward rates . . . We have to 
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highlight the fact that the forward rates are very sensitive to the shape of the yield curve 
particularly in the very long end. 
 
To test if the way used to estimate the term structure of interest rates have a significant 
impact on correlations among forward rates we have proceed to estimate them. 
 
First we have estimated the correlations using the two sets of our zero coupon bond 
estimates from GovPx data base: Svensson models using both the homoskedastic and 
the heteroskedastic assumptions. 
 
We can observe that these correlation coefficient estimates differ significantly from one 
model to another. Analyzing the results there are some patterns that can be pointed out. 
The first one is that weighted schemes produce lower correlation coefficients. This is 
illustrated in Figure 7 where we have represented the evolution of the correlation 
coefficient between two year and five year forward rates (with six month tenor) 
corresponding to Svensson model using the homoskedastic (or unweighted) and the 
heteroskedastic (or weighted) assumption about the error term.  
 

[INSERT FIGURE 7] 
 
This result that can be generalized to all maturities and it is a consequence of the fact 
that using the weighted scheme forces the adjustment of the yield curve in such a way 
that affects the entire curve, making the resulting changes in the yield curve less 
“linear”. We can also see that these differences were higher during the second half of 
the sample. 
 
In the next pictures we have illustrated the evolution of the correlation coefficient 
between different pairs of forward rates using the four alternative estimates of the yield 
curve. 
 
The Figure 8 represents the correlations using again a 30 days window between six 
month spot rates and the one year forward rates with a six month tenor. 
 

[INSERT FIGURE 8] 
 
We can see that differences are huge during the first half of the sample period. The FRB 
estimates produced the most stable and highest estimates. Some of these differences 
may come from the fact that FRB dropped from the sample those assets with a maturity 
lower than three moths. That means that they did not care too much about what 
happened in the very short end of the yield curve. However, if we have a look at the 
yield curve during the first years of the sample the term structure had a very steep slope 
in the shortest maturities. And forward rates are very sensitive to the slope of the yield 
curve. So the FRB estimation eliminates or at least softens some of the sharp changes 
and movements that forward rates experienced during this part of the sample period. 
 
On the contrary Figure 9 shows as the correlations among mid maturity forward rates 
the differences are not so severe. The only one with a different behavior corresponds to 
our estimates using unweighted scheme. 
 

[INSERT FIGURE 9] 
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But the most astonishing results were obtained when estimating correlations between 
medium and long term forward rates. It must be taken into account that forward rates in 
the very long end of the yield curve are very sensitive to the slope of the zero coupon 
yield curve. As we can see in figure 10, the differences are dramatic. 
 

[INSERT FIGURE 10] 
 
As we can see the estimates of the FRB and the F082 indicate that 10 year forward rate 
and 30 year forward rate are nearly linearly independent meanwhile our estimates would 
suggest just the opposite, that they are practically linearly dependent particularly if we 
use Svensson with the homoskedastic scheme. The method applied by the Department 
of the Treasury produces forward rates with behaviour in the mid point between our 
estimates and those of the Federal Reserve and Bloomberg. All these differences are 
corroborated using a sign test. 
 
In Table 4 we present the outcomes of applying the sign test to corroborate if the 
differences between the VTS extracted from alternative yield curve data sets are 
significant from a statistical point of view. We observe statically significant differences 
in almost all the compared pairs and maturities.  
 

[INSERT TABLE 4] 
 
These results confirm that weighted Svensson model produce lower correlations than 
the unweighted version for most maturities. And the second result that can be 
highlighted is that Bloomberg yield curve data set (F082) produces the lowest 
correlation coefficients compared with the other alternative data sets. 
 
3.4. The impact on the pricing of fixed income derivatives 
 
In previous sections we observe statistical differences in the VTS and correlation 
coefficients for interest rates of different maturities. This fact implies bad news for 
academics and researchers that assume the yield curve that they use as perfectly 
accurate. They are not concern about intrinsic differences between alternative popular 
yield curve data sets. 
 
These differences should have an impact of economic terms when these alternative data 
sets are used as input for calibrations of fixed income valuation models, valuations, 
Greek calculations, risk measurement, capital requirements, or design of hedging 
strategies. But, is this economic impact large enough to be concerned about that? It is 
possible that a significant difference in statistical terms has an irrelevant impact in 
economic terms. In this case, this fact would be good news for practitioners that use 
indiscriminately these yield curve data sets. Otherwise they should pay more attention 
to the data set they use and should examine what the more accurate data set for their 
concrete valuation purposes is. 
 
In this section, we propose an example of pricing simple fixed income derivatives in 
order to quantify this impact in terms of dollars. We estimate call prices and call deltas 
writing in theoretical callable bonds obtained from Black, Derman and Toy (1990) 
estimations using zero coupon rates and volatilities from the five considered datasets. 
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This model is considered as the most popular used by the industry. The models fit 
exactly the current term structure of interest rates and the current term structure of spot 
rate volatilities. 
 
The call price is the difference between a straight Treasury bond price and a callable 
Treasury bond price which includes one or two at par call options. We assume that both 
securities are 7% semiannual coupon bonds.  We build the theoretical straight bond by 
discounting the cash flows from the appropriate spot rates for each maturity. The 
callable bond price is computed using the BDT model from the term structure of interest 
rates and the VTS for each date and each data set. The call delta is the ratio between the 
change in price of the call option and the change in price of the underlying bond.  
 
Tables 5 and 6 summarize the results. For each model, we obtain the average value of 
call prices and call deltas for the 33 BDT estimations corresponding to the first working 
day of March, July, and November from 1996 to 2006. These averages are compared to 
the average values for the 5 datasets.  
 

[INSERT TABLES 5 AND 6] 
 
Results show relevant differences in economic terms. For instance, the average call 
price using F082 dataset (Bloomberg) zero coupon rates and standard deviation 
volatilities for a Treasury bond with USD 100 principal, a remaining term to maturity of 
30 years, and two call options at par on 20 and on 25 years is on average USD7.42 
during the 33 BDT estimations. The average call price for the 5 models is USD6.15. 
Thus, the variation respect the average is (7.4241–6.1469)/6.1469 = 20.78% or 
USD1.28. In this sense, the Bloomberg dataset gives a call price 39.41% higher than the 
price obtained from the unweighted Svensson yield curve estimates obtained from the 
GovPX bond dataset, i.e. a difference of USD 2.42 per USD 100 principal. In the case 
of using EGARCH(1,1) volatilities, this difference between the call price that we obtain 
from Bloomberg dataset and that obtained from the weighted Svensson yield curve is 
45.49%, i.e. a difference of USD 2.66 per USD 100 principal. 
 
3.5. The impact on the expectations hypothesis 
 
Finally, Tables 7 and 8 report the sensitivities of the results from Campbell’s (1995) 
tests of classic term structure hypotheses tests. 
 
Work-in-progress 
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4.- Conclusions 
 
Alternative yield curve data sets are usually assumed as perfectly correct when they are 
use as input for a number of financial purposes. Practitioners and researchers do not 
question the accuracy of the yield curve that they obtain from data providers.  
 
In this paper we examine three popular data sets and our own estimate of the zero 
coupon bond yields from the Treasury market. We analyse the differences in terms of 
fitting methodology, in the considered sample of securities, and in the price or yield 
used as input. We observe statistically significant differences appear in the volatilities 
and correlations among the resulting series of spot and forward rates with different 
maturities particularly in the short and long ends of the range of maturities. These 
differences have a dramatic impact on the correlations among forward rates with 
different maturities. Finally, we observe relevant differences in economic terms when 
we apply the yield curves and the volatility term structure to price a very simple fixed 
income derivative. 
 
These observed differences imply bad news for academics and researchers that assume 
the yield curve that they use as perfectly accurate. They are not concern about intrinsic 
differences between alternative popular yield curve data sets. These differences are also 
bad news for practitioners that use indiscriminately these yield curve data sets. They 
should pay more attention to the data set they use and should examine what the more 
accurate data set for their concrete valuation purposes is. 
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Figure 1.- The importance of the variance of the error term 
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Figure 2.- Term structure of interest the first working day of June during the 
sample period. (01.96-12.06) .  
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Figure 3.- Alternative estimations of the term structure of interest using models 
with different degrees of flexibility 
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Note: the points represent the yields to maturity of all the non-callable traded Treasury securities. 
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Figure 4.- The impact of liquidity on yields to maturity 
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Figure 5.- The impact of the assumption about the variance of the error term 
Panel A.- Svensson model with homoskedastic error. VTS corresponding to the 
first working day of June during the sample period 
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Panel B.- Svensson model with heteroskedastic error. VTS corresponding to the 
first working day of June during the sample period 
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Figure 6.- Historical volatility term structure estimates from alternative yield 
curve data sets (July 3, 2006) 
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Figure 7.- The impact of the assumption about the error term. Correlations between the 
2-year-ahead 6-month forward rate and 5-year-ahead 6-month forward rate using 
Svensson’s model and two alternative assumptions about the variance of the error term 
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Figure 8.- Correlations between 6-month spot rate and 1-year-ahead 6-month forward 
rate 
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Figure 9.- Correlations between the 2-year-ahead 6-month forward rate and 5-year-
ahead 6-month forward rate 
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Figure 10.- Correlations between the 10-year-ahead 6-month forward rate and 30-year-
ahead 6-month forward rate 
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Table 1.- Summary statistics of TSIR estimations using Svensson (1994) 
 
Panel A. Sum of squared residuals (SSR) 
This table reports the yearly averages of the sum of squared residuals (SSR) from the daily estimation of 
the term structure of interest rates obtained by applying unweighted (USV) and weighted (WSV) versions 
of Svensson (1994) to different data sets from GovPx asset prices. 

 (A) 
Full sample  

(bills, notes & 
bonds) 

(B) 
Full sample 

excluding on-the-run 
and 1st off-the-run 

(C) 
Mimicking FRB 

(excl. bills, on-the-
run, 1st off-the-run)

(D) 
Mimicking DoT 
(only on-the-run) 
(11 maturities)* 

Year USV WSV USV WSV USV WSV USV WSV 
1996 14.2 14.8 5.5 5.8 5.4 6.1 3.6 3.9 
1997 9.8 10.2 4.8 5.0 4.7 5.5 2.1 2.4 
1998 35.5 38.6 15.5 17.3 14.7 18.3 8.6 9.7 
1999 70.0 78.1 33.0 38.2 32.8 36.7 16.7 18.3 
2000 33.6 38.1 16.0 16.1 6.9 9.6 9.3 11.2 
2001 43.5 45.9 21.0 22.6 20.7 24.1 10.2 10.5 
2002 62.3 64.6 29.5 32.1 28.4 33.8 14.5 15.1 
2003 41.9 38.3 23.0 23.9 21.7 24.3 9.4 9.6 
2004 27.0 27.4 15.1 15.0 13.4 15.5 5.3 5.4 
2005 15.2 16.3 8.1 9.2 8.0 9.4 3.0 3.2 
2006 13.1 13.8 8.1 8.9 8.1 9.1 2.4 2.5 
Avg 33.3 35.1 16.3 17.6 15.0 17.5 7.7 8.3 

Note: all the samples exclude “when-issued” and cash management transactions, trades and quotes related to callable 
bonds and TIPS, and outliers (usual filters are applied). 
* Four maturities of most recently auctioned bills (4-, 13-, 26-, and 52-week), six maturities of just-issued bonds and 
notes (2-, 3-, 5-, 7-, 10-, and 30-year), plus the composite rate in the 20-year maturity range. 

 
 
Panel B. Composition of the data set 
This table shows the average number of observations per day, the number of trading days in the year and 
the average maturity of the longest bond included in the daily estimation. 

 # obs. per day Days per Maturity longest 
Year (A) (B) (C) (D) year bond 
1996 151.6 137.6 115.2 11.0 259 29.8 
1997 150.1 136.2 114.0 11.0 261 29.8 
1998 146.7 132.7 109.4 11.0 261 29.7 
1999 134.4 120.4 96.8 11.0 261 29.8 
2000 120.0 106.1 84.6 11.0 260 29.8 
2001 114.6 100.6 79.6 11.0 258 29.5 
2002 113.3 99.3 76.7 11.0 261 28.6 
2003 115.2 101.2 78.6 11.0 261 27.6 
2004 123.8 109.8 87.2 11.0 262 26.6 
2005 129.6 115.7 93.7 11.0 260 25.6 
2006 157.0 143.4 122.0 11.0 260 28.6 
Avg 132.4 118.4 96.1 11.0 260 28.7 
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Panel C. Summary of estimated main parameters 
 

(A) Full sample  (bills, notes & bonds) 
   USV      WSV    
 0 1 2 1 3 2 0 1 2 1 3 2 
1996 7.21 -0.27 -0.08 0.73 0.12 1.48 7.27 -0.21 -0.04 1.06 0.09 1.96 
1997 6.94 -0.21 -0.07 0.69 0.10 1.51 6.98 -0.18 -0.03 0.97 0.08 2.09 
1998 6.00 -0.54 0.14 0.96 0.26 1.47 6.08 -0.25 0.01 1.13 0.12 1.76 
1999 6.34 -1.08 0.45 0.83 0.53 0.95 6.49 -0.72 0.31 1.51 0.35 1.58 
2000 6.03 -0.19 0.11 0.74 0.09 0.91 6.10 -0.75 0.37 0.85 0.37 0.88 
2001 6.13 -1.02 0.41 0.95 0.49 1.00 6.20 -0.71 0.30 1.48 0.34 1.49 
2002 6.31 -0.08 -0.03 1.34 0.02 1.31 6.36 -0.71 0.28 1.45 0.33 1.45 
2003 6.23 -0.10 -0.03 1.72 0.03 1.72 6.11 -0.69 0.30 2.46 0.32 2.36 
2004 6.14 -0.08 -0.02 2.00 0.02 2.00 6.21 -0.69 0.25 1.70 0.32 1.80 
2005 5.01 -0.84 0.36 1.30 0.41 1.35 5.03 -0.57 0.21 1.18 0.28 1.35 
2006 5.10 -0.90 0.41 1.13 0.45 1.17 5.09 -0.19 0.03 0.79 0.09 1.17 
96/06 6.13 -0.48 0.15 1.13 0.23 1.35 6.18 -0.52 0.18 1.33 0.25 1.63 
 

(B) Full sample excluding on-the-run and 1st off-the-run 
   USV      WSV    
 0 1 2 1 3 2 0 1 2 1 3 2 

1996 7.24 -0.26 -0.09 0.73 0.12 1.53 7.28 -0.22 -0.05 1.00 0.10 1.79 
1997 6.95 -0.21 -0.07 0.70 0.10 1.51 6.98 -0.19 -0.04 0.92 0.08 1.68 
1998 6.02 -0.76 0.32 1.33 0.37 1.42 6.09 -0.25 0.03 1.28 0.12 1.78 
1999 6.37 -1.13 0.51 0.89 0.55 0.93 6.50 -0.73 0.32 1.43 0.35 1.50 
2000 6.10 0.03 -0.19 0.36 0.10 1.53 6.12 -0.74 0.36 0.85 0.37 0.88 
2001 6.15 -1.18 0.50 0.95 0.58 0.99 6.21 -0.76 0.33 1.45 0.37 1.46 
2002 6.34 -1.16 0.44 0.96 0.55 1.02 6.40 -0.71 0.28 1.39 0.33 1.41 
2003 6.28 -0.10 -0.03 1.80 0.02 1.80 6.34 -0.42 0.12 1.81 0.18 1.86 
2004 6.19 -0.08 -0.02 2.07 0.02 2.07 6.24 -0.68 0.24 1.73 0.31 1.82 
2005 5.05 -0.92 0.39 1.23 0.45 1.31 5.06 -0.47 0.15 1.18 0.23 1.40 
2006 5.13 -0.88 0.40 1.21 0.44 1.25 5.11 -0.15 0.00 0.77 0.07 1.22 
96/06 6.17 -0.60 0.20 1.11 0.30 1.40 6.21 -0.48 0.16 1.25 0.23 1.53 
 

(C) Mimicking FRB (excl. bills, on-the-run, 1st off-the-run) 
   USV      WSV    
 0 1 2 1 3 2 0 1 2 1 3 2 

1996 7.24 -0.27 -0.21 0.58 0.14 1.44 7.32 -0.91 0.41 1.95 0.44 2.01 
1997 6.95 -0.20 -0.19 0.54 0.11 1.43 7.03 -0.91 0.42 1.94 0.45 1.99 
1998 6.02 -0.22 -0.38 0.49 0.17 1.36 6.14 -0.91 0.41 2.05 0.45 2.11 
1999 6.36 -1.17 0.52 0.85 0.57 0.89 6.46 -1.01 0.46 1.42 0.49 1.47 
2000 6.03 -0.76 0.23 2.28 0.44 6.24 5.98 -0.08 -0.02 2.16 0.06 4.57 
2001 6.08 -1.05 0.42 1.06 0.50 1.11 6.25 -0.91 0.40 1.56 0.44 1.58 
2002 6.33 -0.71 -0.18 0.61 0.45 1.23 6.46 -0.92 0.38 1.52 0.44 1.55 
2003 6.27 -0.73 -0.33 0.61 0.35 1.27 6.36 -0.92 0.38 1.90 0.43 1.91 
2004 6.17 -0.86 0.02 0.91 0.41 1.35 6.27 -0.93 0.38 1.82 0.44 1.87 
2005 5.05 -1.03 0.44 1.21 0.50 1.28 5.13 -0.91 0.40 1.54 0.45 1.61 
2006 5.13 -0.98 0.45 1.20 0.49 1.24 5.20 -1.02 0.48 1.70 0.51 1.73 
96/06 6.15 -0.72 0.07 0.94 0.38 1.71 6.24 -0.86 0.37 1.78 0.42 2.04 
 

(D) Mimicking DoT (only on-the-run) (11 maturities) 
   USV      WSV    
 0 1 2 1 3 2 0 1 2 1 3 2 

1996 7.01 -0.27 -0.11 0.49 0.13 1.12 7.09 -0.21 -0.03 0.84 0.09 1.48 
1997 6.84 -0.20 -0.09 0.61 0.09 1.42 6.87 -0.18 -0.03 0.87 0.08 1.59 
1998 5.86 -0.96 0.42 1.22 0.47 1.29 5.92 -0.26 0.02 1.04 0.12 1.48 
1999 6.13 -1.13 0.52 0.89 0.55 0.91 6.28 -0.70 0.30 1.33 0.34 1.40 
2000 5.84 0.04 0.01 0.73 -0.02 0.96 5.95 -0.73 0.37 0.78 0.36 0.80 
2001 6.05 -0.89 0.37 1.15 0.43 1.19 6.07 -0.69 0.30 1.55 0.33 1.56 
2002 6.13 -1.09 0.43 1.10 0.52 1.15 6.16 -0.71 0.29 1.43 0.33 1.43 
2003 6.04 -0.10 -0.03 1.72 0.02 1.72 6.09 -0.67 0.25 1.78 0.31 1.79 
2004 6.00 -0.17 0.02 1.94 0.06 1.95 6.06 -0.67 0.24 1.75 0.31 1.84 
2005 4.92 -0.91 0.39 1.21 0.45 1.28 4.95 -0.47 0.15 1.14 0.22 1.36 
2006 4.97 -1.30 0.62 0.92 0.65 1.05 4.98 -0.13 -0.01 0.64 0.06 1.09 
96/06 5.98 -0.63 0.23 1.09 0.31 1.28 6.04 -0.49 0.17 1.20 0.23 1.44 
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Table 2.- Summary statistics of VTS estimations 
 
Panel A: Historical Volatility from standard deviations 
 Mean Standard deviation 
Maturity DoT F082 FRB USV WSV DoT F082 FRB USV WSV 
1 month n/a n/a 0.5824 0.5700 0.5483 n/a n/a 1.7041 0.5466 0.1718 

3 month 0.1900 0.2210 0.2354 0.3856 0.3587 0.1232 0.1392 0.2031 0.3278 0.1210 

6 month 0.1811 0.2118 0.1829 0.2795 0.2415 0.1161 0.1391 0.1307 0.2076 0.1360 

1 year 0.2219 0.2787 0.2388 0.2519 0.2490 0.1578 0.2324 0.1879 0.1861 0.1881 

1.5 year n/a n/a 0.2607 0.2679 0.2728 n/a n/a 0.1990 0.1989 0.2026 

2 years 0.2680 0.2829 0.2623 0.2747 0.2784 0.1857 0.1994 0.1867 0.1951 0.1941 

3 years 0.2528 0.2601 0.2481 0.2657 0.2663 0.1558 0.1608 0.1500 0.1652 0.1622 

5 years 0.2225 0.2341 0.2165 0.2306 0.2304 0.1061 0.1137 0.0999 0.1100 0.1127 

7 years 0.2022 n/a 0.1943 0.2012 0.2030 0.0805 n/a 0.0744 0.0796 0.0819 

10 years 0.1836 0.1987 0.1729 0.1733 0.1759 0.0630 0.0683 0.0548 0.0562 0.0582 

15 years n/a 0.1752 0.1531 0.1523 0.1560 n/a 0.0527 0.0397 0.0402 0.0428 

20 years 0.1488 0.1617 0.1394 0.1439 0.1473 0.0392 0.0436 0.0333 0.0346 0.0341 

25 years n/a n/a 0.1311 0.1398 0.1477 n/a n/a 0.0317 0.0324 0.0357 

30 years 0.1326 0.1583 0.1355 0.1375 0.1552 0.0360 0.0482 0.0399 0.0314 0.0525 

 
Panel B. Conditional volatility from EGARCH(1,1) 
 Mean  Standard deviation 
Maturity DoT F082 FRB USV WSV DoT F082 FRB USV WSV 
1 month n/a n/a 0.3960 0.3100 0.5049 n/a n/a 0.9042 0.2841 0.1471 

3 month 0.1864 0.1881 0.1887 0.2253 0.3043 0.1205 0.1187 0.1593 0.1831 0.1016 

6 month 0.1835 0.1766 0.1829 0.1996 0.1913 0.1176 0.1165 0.1304 0.1449 0.1140 

1 year 0.2284 0.2459 0.2498 0.2354 0.2360 0.1624 0.2036 0.1966 0.1736 0.1828 

1.5 year n/a n/a 0.2732 0.2609 0.2662 n/a n/a 0.2085 0.1936 0.2026 

2 years 0.2781 0.2672 0.2738 0.2688 0.2726 0.1928 0.1873 0.1947 0.1908 0.1945 

3 years 0.2654 0.2485 0.2602 0.2628 0.2617 0.1632 0.1531 0.1570 0.1632 0.1638 

5 years 0.2325 0.2251 0.2266 0.2320 0.2285 0.1102 0.1091 0.1039 0.1104 0.1157 

7 years 0.2113 n/a 0.2020 0.2022 0.2008 0.0837 n/a 0.0769 0.0797 0.0847 

10 years 0.1909 0.1846 0.1790 0.1727 0.1732 0.0653 0.0635 0.0564 0.0559 0.0607 

15 years n/a 0.1658 0.1570 0.1509 0.1523 n/a 0.0498 0.0407 0.0398 0.0449 

20 years 0.1520 0.1475 0.1425 0.1421 0.1440 0.0400 0.0400 0.0340 0.0341 0.0365 

25 years n/a n/a 0.1332 0.1382 0.1394 n/a n/a 0.0322 0.0320 0.0366 

30 years 0.1380 0.1475 0.1384 0.1360 0.1395 0.0373 0.0448 0.0408 0.0310 0.0499 

Department of Treasury (DoT), Bloomberg (F082), Federal Reserve Board (FRB) and our estimates of 
unweighted (USV) and weighted (WSV) Svensson models from the GovPx bond dataset. 
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Table 3.- Sign test of equal volatility estimates and the sample data  

Table shows for each pair of data sets which one produces a statistically significant higher volatility 

 Panel A. Differences between data sets. Historical volatility (Standard Deviation) 
Maturity DoT-

F082 
DoT-
FRB 

DoT-
USV 

DoT-
WSV 

F082-
FRB 

F082-
USV 

F082-
WSV 

FRB-
USV 

FRB-
WSV 

USV-
WSV 

1 month n/a n/a n/a n/a n/a n/a n/a USVa WSVa WSVa 
3 month F082b  USVa WSVa  USVa WSVa USVa WSVa WSVa 
6 month F082b  USVa WSVa  USVa WSVa USVa WSVa  
1 year F082a  USVa WSVa F082c   USVa WSVa  
1.5 year n/a n/a n/a n/a n/a n/a n/a  WSVb WSVb 
2 years   USVa WSVc   WSVc USVc WSVa WSVa 
3 years F082a  USVa WSVa F082a USVb WSVa USVa WSVa WSVb 
5 years F082a DoTb USVa WSVa F082a   USVa WSVa  
7 years F082a DoTa   n/a n/a n/a USVa WSVa  
10 years F082a DoTa DoTa DoTa F082a F082a F082a  WSVb WSVa 
15 years n/a n/a n/a n/a F082a F082a F082a  WSVb WSVa 
20 years F082a DoTa DoTa DoTc F082a F082a F082a USVa WSVa WSVa 
25 years n/a n/a n/a n/a n/a n/a n/a USVa WSVa WSVa 
30 years F082a DoTb DoTc  F082a F082a  USVa WSVa WSVa 
 Panel B. Differences between data sets. Conditional volatility (E-GARCH) 
Maturity DoT-

F082 
DoT-
FRB 

DoT-
USV 

DoT-
WSV 

F082-
FRB 

F082-
USV 

F082-
WSV 

FRB-
USV 

FRB-
WSV 

USV-
WSV 

1 month n/a n/a n/a n/a n/a N/A N/A  WSVa WSVa 
3 month  DoTc USVa WSVa   WSVa USVb WSVa WSVa 
6 month DoTc DoTa    USVb WSVb  WSVb WSVc 
1 year        RFb   
1.5 year n/a n/a n/a n/a n/a N/A N/A RFa  WSVb 
2 years DoTa DoTa DoTa    WSVb RFa  WSVa 
3 years DoTa  DoTa  RFa USVa WSVa    
5 years DoTb DoTb    USVa WSVb    
7 years DoTa DoTa DoTa DoTa n/a N/A N/A    
10 years DoTa DoTa DoTa DoTa F082c F082b  RFa RFc  
15 years n/a n/a n/a n/a F082b F082a  RFa   
20 years DoTa DoTa DoTa       WSVc 
25 years n/a n/a n/a n/a n/a N/A N/A USVa WSVa  
30 years  DoTb DoTa DoTb       
 Panel C. Differences between volatility estimation method (same data set) 
Maturity DoT F082 FRB USV WSV 
1 month n/a n/a StDvb StDva StDva 
3 month StDva StDvb StDvb StDva StDva 
6 month EGARCHa StDva  StDva StDva 
1 year EGARCHa StDva  StDva StDva 
1.5 year n/a n/a  StDva  
2 years EGARCHa StDva  StDva  
3 years EGARCHa StDva EGARCHa StDva  
5 years EGARCHa StDva EGARCHa EGARCHb  
7 years EGARCHa n/a EGARCHa EGARCHb  
10 years EGARCHa StDva EGARCHa   
15 years n/a StDva EGARCHa StDva  
20 years EGARCHa StDva EGARCHa StDva  
25 years n/a n/a EGARCHa StDva StDva 
30 years EGARCHa StDva EGARCHa StDva StDva 
Sign test of equal volatility estimates from the five considered datasets: Department of Treasury (DoT), 
Bloomberg (F082), Federal Reserve Board (FRB) and our estimates of unweighted (USV) and weighted 
(WSV) Svensson models from the GovPx bond dataset. StDv is Standard Deviation. 
Note: a p<0.01; b p<0.05; c p<0.1 
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Table 4.- Test of equal correlation coefficients 
Table shows for each pair of data sets which one produces a statistically significant higher correlation 
coefficient between daily changes of pairs of 6-month spot rates and forward rates 
Maturity DoT-

F082 
DoT-
FRB 

DoT-
USV 

DoT-
WSV 

F082-
FRB 

F082-
USV 

F082-
WSV 

FRB-
USV 

FRB-
WSV 

USV-
WSV 

R0.5-F1,1.5 DoTa FRBa DoTa DoTa FRBa   FRBa FRBa  
R0.5-F2,2.5 DoTb FRBa   FRBa USVa WSVa FRBa FRBa WSVb 
R0.5-F5,5.5 DoTa FRBa   FRBa USVa  FRBa FRBa USVb 
R0.5-F10,10.5 DoTa DoTb DoTa DoTa FRBb    FRBb USVb 
R0.5-F29.5,30 DoTa  USVa WSVa FRBb USVa WSVa USVa WSVa  
F1,1.5-F5,5.5 DoTa FRBa USVa  FRBa USVa WSVa  FRBa USVa 
F1,1.5-F10,10.5 DoTa DoTa DoTa DoTa FRBa USVa WSVa    
F1,1.5-F29.5,30 DoTa  USVa  FRBa USVa WSVa USVa WSVa USVb 
F2,2.5-F5,5.5 DoTb FRBa USVa  FRBa USVa WSVb  FRBa USVa 
F2,2.5-F10,10.5 DoTa DoTa DoTa DoTa  USVa  USVa   
F2,2.5-F29.5,30 DoTa  USVa WSVa  USVa WSVa USVa WSVa USVa 
F5,5.5-F10,10.5 DoTa DoTa  DoTa FRBa USVa  USVb FRBa USVa 
F5,5.5-F29.5,30 DoTa DoTa USVa DoTc FRBa USVa WSVa USVa WSVa USVa 
F10,10.5-F29.5,30 DoTa DoTa USVa WSVa  USVa WSVa USVa WSVa USVa 
Sign test of equal correlation coefficient estimates from the five considered datasets: Department of 
Treasury (DoT), Bloomberg (F082), Federal Reserve Board (FRB) and our estimates of unweighted 
(USV) and weighted (WSV) Svensson models from the GovPx bond dataset. StDv is Standard Deviation. 
Note: a p<0.01; b p<0.05; c p<0.1 
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Table 5. Comparison between spot interest rate data sets (Standard deviation 
volatilities) 
Call prices and call deltas writing in theoretical callable bonds obtained from BDT estimations 
using zero coupon rates and volatilities from the five considered datasets: Department of 
Treasury (DoT), Bloomberg (F082), Federal Reserve Board (FRB) and our estimates of 
unweighted (USV) and weighted (WSV) Svensson models from the GovPx bond dataset.  
The call price is the difference between a straight Treasury bond price and a callable Treasury 
bond price which includes one or two at par call options. Both securities are 7% semiannual 
coupon bonds.  The call delta is the ratio between the change in price of the call option and the 
change in price of the underlying bond. For each model, we obtain the average value of call 
prices and call deltas for the 33 BDT estimations. These averages are compared to the average 
values for the 5 datasets. Sample period: first working day of March, July, and November from 
1996 to 2006. 

Term to   Gap between each dataset and the average of the 5 datasets 

Opt1  Opt2  Maturity      DoT F082 FRB USV  WSV

0.25  ‐  1.25 bond  %Var./Avg. 0.05% ‐0.01% ‐0.03% ‐0.02%  0.01%
      call  %Var./Avg. 2.10% ‐0.64% ‐0.27% ‐0.89%  ‐0.30%
      call  $Spread/Avg $0.06 $‐0.02 $‐0.01 $‐0.02  $‐0.01
      delta  %Var./Avg. 0.14% ‐0.08% 0.09% ‐0.07%  ‐0.08%

0.5  ‐  5.5 bond  %Var./Avg. 0.13% 0.07% ‐0.06% ‐0.11%  ‐0.03%
      call  %Var./Avg. 1.46% 1.05% ‐0.42% ‐1.42%  ‐0.67%
      call  $Spread/Avg $0.13 $0.10 $‐0.04 $‐0.13  $‐0.06
      delta  %Var./Avg. 1.38% ‐0.84% 1.65% ‐1.12%  ‐1.08%

1  2  3 bond  %Var./Avg. 0.02% ‐0.03% ‐0.06% 0.02%  0.04%
      call  %Var./Avg. ‐0.98% ‐0.28% ‐0.89% 1.04%  1.11%
      call  $Spread/Avg $‐0.04 $‐0.01 $‐0.04 $0.05  $0.05
      delta  %Var./Avg. ‐0.40% 0.57% 1.53% ‐0.81%  ‐0.90%

5  ‐  10 bond  %Var./Avg. 0.77% 0.79% ‐0.54% ‐0.57%  ‐0.45%
      call  %Var./Avg. 13.22% 15.56% ‐9.26% ‐11.14%  ‐8.38%
      call  $Spread/Avg $0.76 $0.90 $‐0.54 $‐0.64  $‐0.48
      delta  %Var./Avg. 6.00% 11.40% ‐6.10% ‐6.24%  ‐5.07%

10  20  30 bond  %Var./Avg. 1.42% 1.70% 0.07% ‐1.53%  ‐1.65%
      call  %Var./Avg. 6.64% 13.92% ‐0.89% ‐10.37%  ‐9.31%
  (1)    call  $Spread/Avg $0.74 $1.56 $‐0.10 $‐1.16  $‐1.04
      delta  %Var./Avg. 3.78% 10.47% 1.21% ‐6.91%  ‐8.55%

20  25  30 bond  %Var./Avg. 1.42% 1.70% 0.07% ‐1.53%  ‐1.65%
      call  %Var./Avg. 12.18% 20.78% ‐2.29% ‐18.63%  ‐12.03%
  (1)    call  $Spread/Avg $0.75 $1.28 $‐0.14 $‐1.15  $‐0.74
      delta  %Var./Avg. 6.96% 16.86% 0.80% ‐14.29%  ‐10.32%

Note: “bond” is the price of a 7% semiannual coupon straight Treasury bond, “call” is the price 
of a call option writing in a 7% semiannual coupon callable Treasury bond, “delta” is the call 
delta. For instance, the average call price using F082 dataset (Bloomberg) zero coupon rates and 
standard deviation volatilities for a Treasury bond with USD 100 principal, a remaining term to 
maturity of 30 years, and two call options at par on 20 and on 25 years is on average USD7.42 
during the 33 BDT estimations. The average call price for the 5 models is USD6.15. Thus, the 
variation respect the average is (7.4241–6.1469)/6.1469 = 20.78% or USD1.28. In this sense, 
the Bloomberg dataset gives a call price 39.41% higher than the price obtained from the 
unweighted Svensson yield curve estimates obtained from the GovPX bond dataset, i.e. a 
difference of USD 2.42 per USD 100 principal.   
 (1) There are not zero coupon rates longer than 20 year in the DoT dataset from February 19, 
2002 to March 23, 2006. Comparison between the 5 models for 30 year bonds excludes period 
from July 2002 to July 2005. 
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Table 6. Comparison between spot interest rate data sets (EGARCH volatilities) 
Call prices and call deltas writing in theoretical callable bonds obtained from BDT estimations 
using zero coupon rates and volatilities from the five considered datasets: Department of 
Treasury (DoT), Bloomberg (F082), Federal Reserve Board (FRB) and our estimates of 
unweighted (USV) and weighted (WSV) Svensson models from the GovPx bond dataset.  
The call price is the difference between a straight Treasury bond price and a callable Treasury 
bond price which includes one or two at par call options. Both securities are 7% semiannual 
coupon bonds.  The call delta is the ratio between the change in price of the call option and the 
change in price of the underlying bond. For each model, we obtain the average value of call 
prices and call deltas for the 33 BDT estimations. These averages are compared to the average 
values for the 5 datasets. Sample period: first working day of March, July, and November from 
1996 to 2006.  

Term to   Gap between each dataset and the average of the 5 datasets

Opt1  Opt2  Maturity      DoT F082 FRB  USV  WSV

0.25  ‐  1.25 bond  %Var./Avg. 0.01% 0.00% ‐0.03%  0.02%  0.01%
      call  %Var./Avg. 0.47% -0.58% -0.15% 0.48% -0.22% 
      call  $Spread/Avg $0.01 $-0.02 $-0.00 $0.01 $-0.01 
      delta  %Var./Avg. 0.04% -0.08% 0.10% 0.02% -0.07% 

0.5  ‐  5.5 bond  %Var./Avg. ‐0.01% 0.10% 0.02%  ‐0.09%  ‐0.05%
      call  %Var./Avg. 0.18% 1.21% 0.22% -1.03% -0.59% 
      call  $Spread/Avg $0.02 $0.11 $0.02 $-0.09 $-0.05 
      delta  %Var./Avg. -3.01% -0.37% -0.46% -3.23% 7.07% 
1  2  3 bond  %Var./Avg. ‐0.06% 0.00% ‐0.02%  0.04%  0.02%
      call  %Var./Avg. -1.09% -0.25% 0.13% 0.72% 0.49% 
      call  $Spread/Avg $-0.05 $-0.01 $0.01 $0.03 $0.02 
      delta  %Var./Avg. -1.54% 1.97% 0.49% -0.55% -0.38% 
5  ‐  10 bond  %Var./Avg. 0.68% 0.79% ‐0.49%  ‐0.55%  0.43%
      call  %Var./Avg. 12.90% 13.45% -7.59% -11.03% -7.73% 
      call  $Spread/Avg $0.73 $0.76 $-0.43 $-0.63 $-0.44 
      delta  %Var./Avg. 6.09% 9.87% -6.69% -6.16% -3.11% 

10  20  30 bond  %Var./Avg. 0.78% 1.45% 0.05%  ‐1.04%  ‐1.24%
      call  %Var./Avg. 6.31% 10.20% 4.20% -7.07% -13.64% 
  (1)    call  $Spread/Avg $0.66 $1.07 $0.44 $-0.74 $-1.43 
      delta  %Var./Avg. 1.77% 7.53% 3.85% -4.95% -8.20% 

20  25  30 bond  %Var./Avg. 0.78% 1.45% 0.05%  ‐1.04%  ‐1.24%
      call  %Var./Avg. 10.22% 21.56% 6.79% -14.65% -23.93% 
  (1)    call  $Spread/Avg $0.60 $1.26 $0.40 $-0.86 $-1.40 
      delta  %Var./Avg. 6.07% 17.67% 5.95% -11.14% -18.56% 

Note: “bond” is the price of a 7% semiannual coupon straight Treasury bond, “call” is the price 
of a call option writing in a 7% semiannual coupon callable Treasury bond, “delta” is the call 
delta. For instance, the average call price using F082 dataset (Bloomberg) zero coupon rates and 
EGARCH volatilities for a Treasury bond with USD 100 principal, a remaining term to maturity 
of 30 years, and two call options at par on 20 and 25 years is on average USD7.10 during the 33 
BDT estimations. The average call price for the 5 models is USD5.84. Thus, the variation 
respect the average is (7.1025–5.8428)/5.8428 = 21.56% or USD1.26. In this sense, the 
Bloomberg dataset gives a call price 45.49% higher than the price obtained from the weighted 
Svensson yield curve estimates obtained from the GovPX bond dataset, i.e. a difference of USD 
2.66 per USD 100 principal.  
(1) There are not zero coupon rates longer than 20 year in the DoT dataset from February 19, 
2002 to March 23, 2006. Comparison between the 5 models for 30 year bonds excludes period 
from July 2002 to July 2005. 
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Table 7. Replication of Table 1 “Means and Standard Deviations of Term 
Structure Variables” (Campbell, 1995) 

 

Panel A. Department of Treasury (DoT) 
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Excess return 0.448 0.455 0.471 0.487 0.528 0.585 0.713 
 (0.204) (0.210) (0.237) (0.344) (0.757) (1.638) (3.795) 
Change in yield -0.018 -0.016 -0.015 -0.015 -0.033 -0.056 -0.081 
 (0.244) (0.205) (0.202) (0.220) (0.271) (0.292) (0.267) 
Yield spread 0.070 0.134 0.264 0.388 0.677 0.995 1.483 
 (0.217) (0.327) (0.376) (0.548) (0.764) (1.154) (0.201) 

 

Panel B. Bloomberg (F082)  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Excess return 0.439 0.450 0.471 0.490 0.523 0.587 0.715 
 (0.204) (0.210) (0.239) (0.356) (0.754) (1.637) (3.717) 
Change in yield -0.023 -0.017 -0.013 -0.021 -0.035 -0.060 -0.084 
 (0.237) (0.196) (0.198) (0.228) (0.270) (0.292) (0.261) 
Yield spread 0.107 0.201 0.370 0.516 0.738 1.105 1.577 
 (0.240) (0.374) (0.409) (0.524) (0.747) (1.180) (0.200) 
 

Panel C. Federal Reserve Board (FRB)  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Excess return 0.466 0.468 0.475 0.492 0.526 0.586 0.743 
 (0.207) (0.212) (0.236) (0.348) (0.744) (1.627) (3.682) 
Change in yield -0.008 -0.008 -0.011 -0.019 -0.035 -0.061 -0.086 
 (0.216) (0.199) (0.192) (0.221) (0.266) (0.290) (0.259) 
Yield spread 0.011 0.026 0.081 0.211 0.441 0.775 1.463 
 (0.135) (0.254) (0.377) (0.543) (0.816) (1.281) (0.204) 
 

Panel D. Unweighted Svensson model (USV) from the GovPx bond dataset  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Excess return 0.448 0.452 0.466 0.489 0.524 0.585 0.745 
 (0.199) (0.204) (0.233) (0.339) (0.742) (1.673) (3.571) 
Change in yield 0.000 -0.001 -0.006 -0.017 -0.038 -0.060 -0.087 
 (0.311) (0.272) (0.219) (0.216) (0.265) (0.298) (0.251) 
Yield spread 0.035 0.072 0.182 0.362 0.598 0.945 1.643 
 (0.149) (0.270) (0.399) (0.540) (0.784) (1.238) (0.199) 
 

Panel E. Weighted Svensson model (WSV) from the GovPx bond dataset  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Excess return 0.436 0.444 0.462 0.487 0.524 0.585 0.739 
 (0.201) (0.206) (0.231) (0.345) (0.745) (1.646) (3.620) 
Change in yield -0.030 -0.023 -0.013 -0.014 -0.038 -0.062 -0.084 
 (0.239) (0.215) (0.194) (0.220) (0.267) (0.294) (0.255) 
Yield spread 0.066 0.126 0.275 0.480 0.724 1.063 1.756 
 (0.114) (0.228) (0.356) (0.513) (0.779) (1.240) (0.199) 
 

Panel F. Original Campbell’s Table 1  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Excess return 0.379 0.553 0.829 0.862 0.621 0.475 -0.234 
 (0.640) (1.219) (2.950) (6.203) (11.29) (19.32) (36.77) 
Change in yield 0.014 0.014 0.014 0.014 0.014 0.014 0.013 
 (0.591) (0.575) (0.569) (0.546) (0.486) (0.408) (0.307) 
Yield spread 0.196 0.324 0.569 0.761 0.948 1.141 1.358 
 (0.210) (0.301) (0.437) (0.594) (0.799) (1.013) (1.234) 
Campbell footnote: “Source: Author's calculations using estimated monthly zero-coupon yields, 1952-
1991, from McCulloch and Kwon (1993). The data are measured monthly, but expressed in annualized 
percentage points. Each row shows the mean of the variable, with the standard deviation below in 
parentheses. Excess returns and yield spreads are measured relative to 1-month Treasury bill rates.” 
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Table 8. Replication of Table 2 “Regression Coefficients” (Campbell, 1995) 
 

Panel A. Department of Treasury (DoT) 
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Short-run changes 1.086 0.660 0.778 1.297 0.182 -1.192 -2.050 

In long yields (0.014) (0.014) (0.023) (0.048) (0.087) (0.137) (0.210) 
Long-run changes 3.112 1.494 1.224 1.442 1.035 0.918 -0.124 

In short yields (0.036) (0.015) (0.010) (0.013) (0.019) (0.019) (0.022) 
 

Panel B. Bloomberg (F082)  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Short-run changes 0.915 0.592 0.507 0.976 0.081 -1.607 -1.806 

In long yields (0.012) (0.012) (0.020) (0.046) (0.091) (0.140) (0.202) 
Long-run changes 2.578 1.328 1.046 1.147 0.952 0.967 0.000 

In short yields (0.032) (0.013) (0.008) (0.012) (0.019) (0.018) (0.030) 
 

Panel C. Federal Reserve Board (FRB)  
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Short-run changes 1.661 1.614 1.556 1.399 0.457 -0.907 -1.777 

In long yields (0.018) (0.019) (0.026) (0.048) (0.086) (0.128) (0.184) 
Long-run changes 3.962 2.191 1.545 1.539 1.278 1.056 0.199 

In short yields (0.041) (0.018) (0.011) (0.014) (0.019) (0.018) (0.016) 
 

Panel D. Unweighted Svensson model (USV) from the GovPx bond dataset 
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Short-run changes 1.224 1.092 0.793 0.490 0.073 -0.692 -1.268 

In long yields (0.026) (0.027) (0.030) (0.045) (0.087) (0.137) (0.185) 
Long-run changes 3.436 2.109 1.242 1.298 1.059 1.112 0.016 

In short yields (0.061) (0.027) (0.016) (0.016) (0.021) (0.017) (0.030) 
 

Panel E. Weighted Svensson model (WSV) from the GovPx bond dataset 
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Short-run changes 2.448 2.276 1.880 1.375 0.387 -1.102 -1.870 

In long yields (0.023) (0.023) (0.029) (0.051) (0.091) (0.136) (0.187) 
Long-run changes 5.764 3.003 1.703 1.498 1.213 1.003 0.113 

In short yields (0.052) (0.021) (0.013) (0.015) (0.020) (0.018) (0.013) 
 

Panel F. Original Campbell’s Table 1 
 Long bond maturities (months) 
Variable 2 3 6 12 24 48 120 
Short-run changes 0.019 -0.135 -0.842 -1.443 -1.432 -2.222 -4.102 

In long yields (0.194) (0.285) (0.444) (0.598) (0.996) (1.451) (2.083) 
Long-run changes 0.51 0.473 0.301 0.253 0.341 0.435 1.311 

In short yields (0.097) (0.149) (0.147) (0.210) (0.221) (0.398) (0.120) 
Campbell footnote: “Source: Author's calculations using estimated monthly zero-coupon yields, 1952-
1991, from McCulloch and Kwon (993). Each row shows a regression coefficient β, with the standard 
error below in parentheses. Each coefficient should be one if the expectations hypothesis holds. The 
regression in the first row is 

 
where m is long bond maturity in months. The regression in the second row is 

 
The standard error in the second row is corrected for serial correlation in the error term of the 
regression.” 
      
 


